Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 12(54): 34910-34917, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36540240

RESUMO

Calcium chloride (CaCl2) impregnated zeolite A and strontium chloride (SrCl2) impregnated zeolite A and X composite granules were evaluated as ammonia sorbents for automotive selective catalytic reduction systems. The SrCl2-impregnated zeolite A granules showed a 14% increase in ammonia uptake capacity (8.39 mmol g-1) compared to zeolite A granules (7.38 mmol g-1). Furthermore, composite granules showed 243% faster kinetics of ammonia sorption (0.24 mmol g-1 min-1) compared to SrCl2 (0.07 mmol g-1 min-1) in the first 20 min. The composite CaCl2/SrCl2 impregnated zeolite A granules combined the advantages of the zeolites and CaCl2/SrCl2, where the rapid physisorption from zeolites can reduce the ammonia loading and release time, and chemisorption from the CaCl2/SrCl2 offers abundant ammonia capacity. Moreover, by optimizing the content of SrCl2 loading, the composite granules maintained the granular form with a crushing load of 17 N per granule after ammonia sorption-desorption cycles. Such structurally stable composite sorbents offer an opportunity for fast ammonia loading/release in automotive selective catalytic reduction systems.

2.
Materials (Basel) ; 15(15)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35897543

RESUMO

In order to realize the high-value utilization of copper slag, a process for preparing Cu-Fe alloy through the reduction of copper slag is proposed. The sulfur in the alloy exists in the form of matte inclusions, which is different from sulfur in molten iron. The reaction of CaO with Cu2S is difficult. It is necessary to add a reducing agent to promote desulfurization. To avoid the introduction of other elements, Fe-Mn and CaC2 additions were used as desulfurizers for the desulfurization of Cu-Fe alloy. The thermodynamics of the desulfurization reaction were calculated and the experimental process was studied. It was found that the Gibbs free energy of desulfurization reactions was negative for Fe-Mn and that CaC2 can reduce the sulfur in the alloy to 0.0013% and 0.0079%, respectively. The desulfurization process affected the shape of copper in the alloy. Part of copper in this alloy exists in the form of nano-copper spheres, and the size of the spheres is found to increase after desulfurization. Reducing agents can facilitate the desulfurization process of stable sulfides.

3.
ACS Appl Mater Interfaces ; 13(30): 35795-35803, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34297527

RESUMO

Temperature effects on the contact electrification (CE) is of great interest. Here, different kinds of substoichiometric oxide films, such as TiO2-x, Al2O3-x, Ta2O5-x, and Cr2O3-x, are deposited and annealed at different temperatures, and the CE between the films and a Pt-coated tip is performed by using Kelvin probe force microscopy (KPFM). An intriguing finding is that the polarity on the TiO2-x surface changes from negative to positive with the increase of the sample annealing temperature in air atmosphere. Such a result is attributed to the fact that annealing under an oxidative atmosphere repairs oxygen vacancies and helps upgrade the low valency of Ti3+ to a stable high valency of Ti4+. On the contrary, after annealing occurs in an Ar/H2 atmosphere, the polarity on the TiO2-x surface reverses from positive to negative. This is mainly due to the increase of oxygen vacancies after annealing in reducing atmosphere. Through the KPFM results of Al2O3-x, Ta2O5-x, and Cr2O3-x films, the effect of oxygen vacancies is further confirmed, that is, the decrease of oxygen vacancies eases the films at capturing positive charges. Based on this, TiO2-x-based identical material triboelectric nanogenerators (IM-TENGs) are designed and prepared for the first time to control the current direction. Moreover, a surface state model for explaining the CE mechanism between the metal and annealed dielectric is proposed. This study is conducive to the development of the IM-TENGs which regulate the current direction or voltage output accurately in the future and also provides a further understanding of the dominant mechanism of electron transfer in the CE.

4.
Dalton Trans ; 48(19): 6647, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31025678

RESUMO

Correction for 'A high-entropy B4(HfMo2TaTi)C and SiC ceramic composite' by Hanzhu Zhang et al., Dalton Trans., 2019, DOI: 10.1039/c8dt04555k.

5.
ACS Nano ; 13(2): 2034-2041, 2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30707552

RESUMO

It is known that contact-electrification (or triboelectrification) usually occurs between two different materials, which could be explained by several models for different materials systems ( Adv. Mater. 2018, 30, 1706790; Adv. Mater. 2018, 30, 1803968). But contact between two pieces of the chemically same material could also result in electrostatic charges, although the charge density is rather low, which is hard to understand from a physics point of view. In this paper, by preparing a contact-separation mode triboelectric nanogenerator using two pieces of an identical material, the direction of charge transfer during contact-electrification is studied regarding its dependence on curvatures of the sample surfaces. For materials such as polytetrafluoroethylene, fluorinated ethylene propylene, Kapton, polyester, and nylon, the positive curvature surfaces are net negatively charged, while the negative curvature surfaces tend to be net positively charged. Further verification of the above-mentioned trends was obtained under vacuum (∼1 Pa) and higher temperature (≤358 K) conditions. Based on the received data acquired for gentle contacting cases, we propose a curvature-dependent charge transfer model by introducing curvature-induced energy shifts of the surface states. However, this model is subject to be revised if the mutual contact mode turns into a sliding mode or more complicated hard-pressed contact mode, in which a rigorous contact between the two pieces of the same material could result in nanoscale damage/fracture and possible species transfer. Our study provides a primitive step toward understanding the basics of contact-electrification.

6.
Dalton Trans ; 48(16): 5161-5167, 2019 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-30778490

RESUMO

A multicomponent composite of refractory carbides, B4C, HfC, Mo2C, TaC, TiC and SiC, of rhombohedral, face-centered cubic (FCC) and hexagonal crystal structures is reported to form a single phase B4(HfMo2TaTi)C ceramic with SiC. The independent diffusion of the metal and nonmetal atoms led to a unique hexagonal lattice structure of the B4(HfMo2TaTi)C ceramic with alternating layers of metal atoms and C/B atoms. In addition, the classical differences in the crystal structures and lattice parameters among the utilized carbides were overcome. Electron microscopy, X-ray diffraction and calculations using density functional theory (DFT) confirmed the formation of a single phase B4(HfMo2TaTi)C ceramic with a hexagonal close-packed (HCP) crystal structure. The DFT based crystal structure prediction suggests that the metal atoms of Hf, Mo, Ta and Ti are distributed on the (0001) plane in the HCP lattice, while the carbon/boron atoms form hexagonal 2D grids on the (0002) plane in the HCP unit cell. The nanoindentation of the high-entropy phase showed hardness values of 35 GPa compared to the theoretical hardness value estimated based on the rule of mixtures (23 GPa). The higher hardness was contributed by the solid solution strengthening effect in the multicomponent hexagonal structure. The addition of SiC as the secondary phase in the sintered material tailored the microstructure of the composite and offered oxidation resistance to the high-entropy ceramic composite at high temperatures.

7.
ACS Appl Mater Interfaces ; 10(41): 35047-35059, 2018 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-30251527

RESUMO

A charge-transfer model considering the mixed conductivities of proton, oxygen ion, and free electron in interface-modified La2Ce2O7 (LCO) electrolyte is designed to analyze the characteristics of proton ceramics fuel cell in the field of the open-circuit voltage, internal short-circuit current, proton-transfer number, discharging curves, oxygen/hydrogen partial pressure, and cell efficiencies. The properties of anode-supported single cells with the modified anode-electrolyte interface containing an in situ formed doped BaCeO3 reaction layer are compared to those of unmodified cells at various temperatures T and H2O partial pressures. Besides, the electrochemical impedance spectroscopies of both cells were investigated by the relaxation time distribution to distinguish different polarization processes. The results indicated that the reaction interface layer can effectively reduce the internal short-circuit current density and increase the proton-transfer number of electrolytes. Importantly, the NiO-BaZr0.1Ce0.7Y0.2O3-δ anode can also make more protons transfer from anode to cathode and participate in the cathodic reaction for LCO-based proton ceramics fuel cell. The polarization of the cell decreases with the increase of water partial pressure, which leads to the increase of open-circuit voltage and cell efficiency.

8.
Adv Mater ; 30(38): e1803968, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30091484

RESUMO

As previously demonstrated, contact-electrification (CE) is strongly dependent on temperature, however the highest temperature in which a triboelectric nanogenerator (TENG) can still function is unknown. Here, by designing and preparing a rotating free-standing mode Ti/SiO2 TENG, the relationship between CE and temperature is revealed. It is found that the dominant deterring factor of CE at high temperatures is the electron thermionic emission. Although it is normally difficult for CE to occur at temperatures higher than 583 K, the working temperature of the rotating TENG can be raised to 673 K when thermionic emission is prevented by direct physical contact of the two materials via preannealing. The surface states model is proposed for explaining the experimental phenomenon. Moreover, the developed electron cloud-potential well model accounts for the CE mechanism with temperature effects for all types of materials. The model indicates that besides thermionic emission of electrons, the atomic thermal vibration also influences CE. This study is fundamentally important for understanding triboelectrification, which will impact the design and improve the TENG for practical applications in a high temperature environment.

9.
Adv Mater ; 30(15): e1706790, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29508454

RESUMO

A long debate on the charge identity and the associated mechanisms occurring in contact-electrification (CE) (or triboelectrification) has persisted for many decades, while a conclusive model has not yet been reached for explaining this phenomenon known for more than 2600 years! Here, a new method is reported to quantitatively investigate real-time charge transfer in CE via triboelectric nanogenerator as a function of temperature, which reveals that electron transfer is the dominant process for CE between two inorganic solids. A study on the surface charge density evolution with time at various high temperatures is consistent with the electron thermionic emission theory for triboelectric pairs composed of Ti-SiO2 and Ti-Al2 O3 . Moreover, it is found that a potential barrier exists at the surface that prevents the charges generated by CE from flowing back to the solid where they are escaping from the surface after the contacting. This pinpoints the main reason why the charges generated in CE are readily retained by the material as electrostatic charges for hours at room temperature. Furthermore, an electron-cloud-potential-well model is proposed based on the electron-emission-dominatedcharge-transfer mechanism, which can be generally applied to explain all types of CE in conventional materials.

10.
Sci Rep ; 7(1): 12391, 2017 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-28959027

RESUMO

In-situ processing of tungsten aluminide and tungsten reinforced aluminium matrix composites from elemental tungsten (W) and aluminium (Al) was investigated by thermal analysis and pulsed current processing (PCP). The formation mechanism of tungsten aluminides in 80 at.% Al-20 at.% W system was controlled by atomic diffusion. The particle size of W and Al in the starting powder mixture regulated the phase formation and microstructure. PCP of micron sized elemental Al and W resulted in formation of particulate reinforcements, W, Al4W and Al12W, dispersed in Al matrix. W particles were surrounded by a ~3 µm thick dual-layer structure of Al12W and Al4W. The hardness of Al matrix, containing Al12W reinforcements, was increased by 50% compared to pure Al, from 0.3 GPa to 0.45 GPa and W reinforcements showed a hardness of 4.35 GPa. On PCP of 80 at.% Al-20 at.% W mixture with particle size of W and Al ~70 nm, resulted in formation of Al4W as major phase along with small fractions of Al5W and unreacted W phase. This suggested strongly that the particle size of the starting elemental Al and W could be the controlling parameter in processing and tailoring of phase evolution, microstructure of particulate reinforced Al matrix composite.

11.
Sci Rep ; 7(1): 1845, 2017 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-28500347

RESUMO

Porous monoliths of MoO3 nanoplates were synthesized from ammonium molybdate (AHM) by freeze-casting and subsequent thermal treatment from 300 to 600 °C. Pure orthorhombic MoO3 phase was obtained at thermal treatment temperature of 400 °C and above. MoO3 monoliths thermally treated at 400 °C displayed bimodal pore structure, including large pore channels replicating the ice crystals and small pores from MoO3 sheets stacking. Transmission electron microscopy (TEM) images revealed that the average thicknesses of MoO3 sheet were 50 and 300 nm in porous monoliths thermally treated at 400 °C. The photocatalytic performance of MoO3 was evaluated through degradation of methylene blue (MB) under visible light radiation and MoO3 synthesized at 400 °C exhibited strong adsorption performance and best photocatalytic activity for photodegradation of MB of 99.7% under visible illumination for 60 min. MoO3 photocatalyst displayed promising cyclic performance, and the decolorization efficiency of MB solution was 98.1% after four cycles.

12.
J Colloid Interface Sci ; 486: 8-15, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27689721

RESUMO

Novel composite photocatalysts BiOBr/Bi(C2O4)OH were successfully fabricated via a chemical etching method. After flower-like Bi(C2O4)OH microstructure assembled by nanorods was etched by KBr under an appropriate acidic condition, BiOBr nano-rods could be in-situ generated in nanorods, forming a heterostructure. The heterostructures exhibited a commendable photocatalytic performance toward the degradation of rhodamine B under the visible light irradiation. The effective separation and transfer of the photogenerated electrons and holes were believed to be the main factor for the enhanced activity, which resulted from the intrinsic characteristic of p-n junction. The responsible mechanism was detailedly discussed, and the photogenerated holes and O2- radicals were confirmed to be the main active species for the photodegradation of RhB.

13.
J Colloid Interface Sci ; 431: 187-93, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25000180

RESUMO

BiOBr/Bi24O31Br10 heterojunction photocatalysts were prepared by a facile solvothermal method for the first time. The X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), N2 sorption, UV-vis diffuse reflectance spectroscopy (UV-vis DRS) and photoluminescence (PL) were applied to investigate the structures, morphologies, surface areas and photocatalytic properties of as-prepared samples. The photocatalytic activity of the samples was evaluated by the photocatalytic degradation of Rhodamine B under the visible-light irradiation. The results showed that BiOBr/Bi24O31Br10 heterojunctions with the different Bi24O31Br10 contents could be obtained by simply adjusting the amount of NaOH solution, all of which exhibited enhanced photocatalytic activity compared with bare BiOBr or Bi24O31Br10. Among them, the BiOBr/Bi24O31Br10 heterojunction prepared with 1.5ml of NaOH solution possessed the highest photocatalytic activity. The photogenerated holes and ·O2(-) radicals were confirmed to be the main active species responsible for the photodegradation of RhB. The mechanism of enhanced photocatalytic activity was discussed and the transfer process of the photogenerated charges carrier between BiOBr and Bi24O31Br10 was proposed on the basis of the estimated energy band positions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...